Hamiltonian cycles in bipartite toroidal graphs with a partite set of degree four vertices
نویسندگان
چکیده
Let G be a 3-connected bipartite graph with partite sets X ∪ Y which is embeddable in the torus. We shall prove that G has a Hamiltonian cycle if (i) G is blanced , i.e., |X| = |Y |, and (ii) each vertex x ∈ X has degree four. In order to prove the result, we establish a result on orientations of quadrangular torus maps possibly with multiple edges. This result implies that every 4-connected toroidal graph with toughness exactly one is Hamiltonian, and partially solves a well-known Nash-Williams’ conjecture.
منابع مشابه
On longest cycles in a balanced bipartite graph with Ore type condition, II
Let G be a balanced bipartite graph with partite sets B and W . We define Ore type invariant as follows: σ1,1(G) = {d(u)+d(v) | uv / ∈ E(G), u ∈ B, v ∈ W}, since any pair of vertices in a partite set are not adjacent. In this paper, we show that if G is 3-connected, then c(G) ≥ 2σ1,1(G) or G is hamiltonian, unless G belongs to a class of exceptional graphs. Furthermore, we shall determine a cla...
متن کاملA note on degree sum conditions for 2-factors with a prescribed number of cycles in bipartite graphs
Let G be a balanced bipartite graph of order 2n ≥ 4, and let σ1,1(G) be the minimum degree sum of two non-adjacent vertices in different partite sets of G. In [On Hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163–165], Moon and Moser proved that if σ1,1(G) ≥ n+1, then G is hamiltonian. In this note, we show that if k is a positive integer, then the Moon-Moser condition also implies the...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملDifferent-Distance Sets in a Graph
A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...
متن کاملToroidal Grids Are Anti-magic
An anti-magic labeling of a finite simple undirected graph with p vertices and q edges is a bijection from the set of edges to the integers {1, ..., q} such that all p vertex sums are pairwise distinct, where the vertex sum on a vertex is the sum of labels of all edges incident to such vertex. A graph is called anti-magic if it has an anti-magic labeling. Hartsfield and Ringel [3] conjectured t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 103 شماره
صفحات -
تاریخ انتشار 2013