Hamiltonian cycles in bipartite toroidal graphs with a partite set of degree four vertices

نویسندگان

  • Jun Fujisawa
  • Atsuhiro Nakamoto
  • Kenta Ozeki
چکیده

Let G be a 3-connected bipartite graph with partite sets X ∪ Y which is embeddable in the torus. We shall prove that G has a Hamiltonian cycle if (i) G is blanced , i.e., |X| = |Y |, and (ii) each vertex x ∈ X has degree four. In order to prove the result, we establish a result on orientations of quadrangular torus maps possibly with multiple edges. This result implies that every 4-connected toroidal graph with toughness exactly one is Hamiltonian, and partially solves a well-known Nash-Williams’ conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On longest cycles in a balanced bipartite graph with Ore type condition, II

Let G be a balanced bipartite graph with partite sets B and W . We define Ore type invariant as follows: σ1,1(G) = {d(u)+d(v) | uv / ∈ E(G), u ∈ B, v ∈ W}, since any pair of vertices in a partite set are not adjacent. In this paper, we show that if G is 3-connected, then c(G) ≥ 2σ1,1(G) or G is hamiltonian, unless G belongs to a class of exceptional graphs. Furthermore, we shall determine a cla...

متن کامل

A note on degree sum conditions for 2-factors with a prescribed number of cycles in bipartite graphs

Let G be a balanced bipartite graph of order 2n ≥ 4, and let σ1,1(G) be the minimum degree sum of two non-adjacent vertices in different partite sets of G. In [On Hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163–165], Moon and Moser proved that if σ1,1(G) ≥ n+1, then G is hamiltonian. In this note, we show that if k is a positive integer, then the Moon-Moser condition also implies the...

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

Different-Distance Sets in a Graph

A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...

متن کامل

Toroidal Grids Are Anti-magic

An anti-magic labeling of a finite simple undirected graph with p vertices and q edges is a bijection from the set of edges to the integers {1, ..., q} such that all p vertex sums are pairwise distinct, where the vertex sum on a vertex is the sum of labels of all edges incident to such vertex. A graph is called anti-magic if it has an anti-magic labeling. Hartsfield and Ringel [3] conjectured t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2013